Graphs with large restrained domination number

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restrained domination in unicyclic graphs

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, th...

متن کامل

restrained roman domination in graphs

a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...

متن کامل

Domination and Signed Domination Number of Cayley Graphs

In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.

متن کامل

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1999

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(99)90095-x